Studies on Poly(propylene fumarate-co-caprolactone diol) Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices
نویسنده
چکیده
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.
منابع مشابه
A Novel Injectable Polymeric Biomaterial Poly(propylene fumarate-co-caprolactone) with Controllable Properties for Bone and Nerve Regenerations
Recently a novel crosslinkable and biodegradable copolymer poly(propylene fumarateco-caprolactone) (PPF-co-PCL) has been synthesized in our lab (Figure 1). By varying copolymer composition, controllable physical properties can be achieved to satisfy various needs in tissue engineering, particularly, bone and nerve regenerations. The physical properties of the copolymers have been extensively in...
متن کاملA citric acid-based hydroxyapatite composite for orthopedic implants.
We describe a novel approach to process bioceramic microparticles and poly(diol citrates) into bioceramic-elastomer composites for potential use in orthopedic surgery. The composite consists of the biodegradable elastomer poly(1,8-octanediol-citrate) (POC) and the bioceramic hydroxyapatite (HA). The objective of this work was to characterize POC-HA composites and assess the feasibility of fabri...
متن کاملAdhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds.
Many studies are currently underway on the quest to make synthetic bone-like materials with composites of polymeric materials and hydroxyapatite (HA). In the present work, we use wetting experiments and surface tension measurements to determine the work of adhesion between biodegradable polymers and HA, with specific reference to the role of humid environments. All the polymers are found to exh...
متن کاملIn vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering.
Blends of biodegradable polymers, poly(caprolactone) and poly(D, L-lactic-co-glycolic acid), have been examined as scaffolds for applications in bone tissue engineering. Hydroxyapatite granules have been incorporated into the blends and porous discs were prepared. Mechanical properties and degradation rates in vitro of the composites were determined. The discs were seeded with rabbit bone marro...
متن کاملCitrate-based Biodegradable Injectable hydrogel Composites for Orthopedic Applications.
Previous studies have confirmed that natural bone apatite crystals are bound with citrate-rich molecules. Citrates on apatite crystals impact bone development and its load-bearing function. However, such understanding has never been translated into bone biomaterials design. Herein, a first citrate-based injectable composite material for orthopedic applications is developed based on our recently...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009